Near-Optimal Algorithms for Online Matrix Prediction
نویسندگان
چکیده
In several online prediction problems of recent interest the comparison class is composed of matrices with bounded entries. For example, in the online max-cut problem, the comparison class is matrices which represent cuts of a given graph and in online gambling the comparison class is matrices which represent permutations over n teams. Another important example is online collaborative filtering in which a widely used comparison class is the set of matrices with a small trace norm. In this paper we isolate a property of matrices, which we call (β, τ)-decomposability, and derive an efficient online learning algorithm, that enjoys a regret bound of Õ( √ β τ T ) for all problems in which the comparison class is composed of (β, τ)-decomposable matrices. By analyzing the decomposability of cut matrices, low trace-norm matrices and triangular matrices, we derive near optimal regret bounds for online max-cut, online collaborative filtering and online gambling. In particular, this resolves (in the affirmative) an open problem posed by Abernethy (2010); Kleinberg et al. (2010). Finally, we derive lower bounds for the three problems and show that our upper bounds are optimal up to logarithmic factors. In particular, our lower bound for the online collaborative filtering problem resolves another open problem posed by Shamir and Srebro (2011). 1
منابع مشابه
Online Streaming Feature Selection Using Geometric Series of the Adjacency Matrix of Features
Feature Selection (FS) is an important pre-processing step in machine learning and data mining. All the traditional feature selection methods assume that the entire feature space is available from the beginning. However, online streaming features (OSF) are an integral part of many real-world applications. In OSF, the number of training examples is fixed while the number of features grows with t...
متن کاملA New Parallel Matrix Multiplication Method Adapted on Fibonacci Hypercube Structure
The objective of this study was to develop a new optimal parallel algorithm for matrix multiplication which could run on a Fibonacci Hypercube structure. Most of the popular algorithms for parallel matrix multiplication can not run on Fibonacci Hypercube structure, therefore giving a method that can be run on all structures especially Fibonacci Hypercube structure is necessary for parallel matr...
متن کاملNo-Regret Algorithms for Unconstrained Online Convex Optimization
Some of the most compelling applications of online convex optimization, including online prediction and classification, are unconstrained: the natural feasible set is R. Existing algorithms fail to achieve sub-linear regret in this setting unless constraints on the comparator point x̊ are known in advance. We present algorithms that, without such prior knowledge, offer near-optimal regret bounds...
متن کاملOnline Similarity Prediction of Networked Data from Known and Unknown Graphs
We consider online similarity prediction problems over networked data. We begin by relating this task to the more standard class prediction problem, showing that, given an arbitrary algorithm for class prediction, we can construct an algorithm for similarity prediction with “nearly” the same mistake bound, and vice versa. After noticing that this general construction is computationally infeasib...
متن کاملHeuristic and exact algorithms for Generalized Bin Covering Problem
In this paper, we study the Generalized Bin Covering problem. For this problem an exact algorithm is introduced which can nd optimal solution for small scale instances. To nd a solution near optimal for large scale instances, a heuristic algorithm has been proposed. By computational experiments, the eciency of the heuristic algorithm is assessed.
متن کامل